he - -
& Waste
anagement

Ao Journal of the Air & Waste Management Association

ISSN: 1096-2247 (Print) 2162-2906 (Online) Journal homepage: www.tandfonline.com/journals/uawm20

©

Taylor & Francis

Taylor & Francis Grou

P

High-resolution analysis of seasonal spatial
variation for urban air pollution: Implications for
exposure assessment

Sooyoung Guak, Jaehoon An, Dong-Hyun Lee, Wonho Yang, Jusung Park &
Kiyoung Lee

To cite this article: Sooyoung Guak, Jaechoon An, Dong-Hyun Lee, Wonho Yang, Jusung Park
& Kiyoung Lee (24 Sep 2025): High-resolution analysis of seasonal spatial variation for urban
air pollution: Implications for exposure assessment, Journal of the Air & Waste Management
Association, DOI: 10.1080/10962247.2025.2552978

To link to this article: https://doi.org/10.1080/10962247.2025.2552978

A
h View supplementary material (&

@ Published online: 24 Sep 2025.

N
CJ/ Submit your article to this journal &

||I| Article views: 32

A
& View related articles &'

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uawm?20


https://www.tandfonline.com/journals/uawm20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10962247.2025.2552978
https://doi.org/10.1080/10962247.2025.2552978
https://www.tandfonline.com/doi/suppl/10.1080/10962247.2025.2552978
https://www.tandfonline.com/doi/suppl/10.1080/10962247.2025.2552978
https://www.tandfonline.com/action/authorSubmission?journalCode=uawm20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uawm20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10962247.2025.2552978?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10962247.2025.2552978?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10962247.2025.2552978&domain=pdf&date_stamp=24%20Sep%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/10962247.2025.2552978&domain=pdf&date_stamp=24%20Sep%202025
https://www.tandfonline.com/action/journalInformation?journalCode=uawm20

JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION & Taylor & Francis
= Taylor &Francis Group

https://doi.org/10.1080/10962247.2025.2552978
‘ W) Check for updates

High-resolution analysis of seasonal spatial variation for urban air pollution:
Implications for exposure assessment

TECHNICAL PAPER

Sooyoung Guak®?, Jaehoon An<, Dong-Hyun Lee9, Wonho Yang®, Jusung Parkf, and Kiyoung Lee**

aDepartment of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea; PInstitute of Health
and Environment, Seoul National University, Seoul, Korea; “Department of Health Sciences, Graduate School of Public Health, Seoul National
University, Seoul, Korea; “Consulting & Technology for Environment Health Safety, Seoul, Korea; ¢Department of Occupational Health, Daegu
Catholic University, Gyeongsan-si, Korea; ‘Seoul Metropolitan Government Research Institute of Public Health and Environment, Gwacheon-si,
Korea

PAPER HISTORY
Received April 16, 2025
Revised August 19, 2025
Accepted August 22, 2025

ABSTRACT
Exposure to air pollutants is associated with significant health effects. Accurate exposure assessment
remains a critical yet challenging aspect of environmental health research. Although air quality
monitoring station (AQMS) data are commonly used as a surrogate for personal exposure, diverse
spatial-temporal variations can lead to significant exposure misclassification. This study aimed to
identify the seasonal spatial variation of five air pollutants (PM, s, PM;o, NO,, CO, and Os) at city and
small spatial scales (1 km?) in Seoul, Korea, using data from the AQMSs and in-situ monitoring sites
(IMSs) for high-resolution measurements. Measurements were conducted across four seasons over
one year, covering city-, district-, and small-scale spatial units, with a detailed focus on a 1 km? area
within one administrative district. The air pollutant concentrations were obtained from the 25 AQMSs
in each district. Fine-scale measurements were carried out at eight IMSs within a 1km? area
surrounding a single AQMS in Guro-gu, Seoul. To enable direct comparison, measurements from
the AQMS and IMS were simultaneously collected following standard monitoring protocols. Moran’s
index was used as an indicator of spatial autocorrelation to identify the homogeneity and hetero-
geneity of air pollutants by spatial units. Concentrations of pollutants at IMSs were overall higher
than those at nearby the AQMS, except for O; concentrations in the spring and summer. Seasonal
spatial autocorrelation patterns in city-scale areas did not reflect variations in small-scale areas. These
findings highlight the limitations of relying solely on AQMS data for exposure assessment and
underscore the value of integrating high-resolution data to reduce estimation errors. This study
provides a framework for enhancing air quality management and exposure assessment strategies by
accounting for spatial-temporal variations, especially in areas lacking dense monitoring networks.
Implications: This study integrates city-scale air quality monitoring station (AQMS) data with
high-resolution in-situ measurements to reveal discrepancies in seasonal spatial patterns of air
pollutants across different spatial scales in Seoul, Korea. By directly comparing AQMS and IMS data
using standard monitoring methods, it demonstrates that commonly used AQMS-based exposure
estimates may significantly underestimate pollution levels in small-scale urban environments. This
high-resolution approach highlights the critical need for incorporating fine-scale monitoring to
improve personal exposure assessment in areas with sparse monitoring coverage.

Introduction PM, 5 exposure has been associated with higher mor-

Air pollutant concentrations are monitored by the
national air quality monitoring station (AQMS).
Exposure to air pollutants has been linked to
increased adverse health effects (Cohen et al. 2017;
Costa et al. 2017; Mills et al. 2015; Serhaug et al.
2006). Epidemiological studies have often used air
pollutant concentrations at AQMSs as a surrogate
for personal exposure because of the limited resources
for direct measurements (Atkinson et al. 2013; Chen
et al. 2018). However, this approach may underesti-
mate health risks, as combined indoor and outdoor

tality risk than outdoor exposure alone (Dong et al.
2020). This can lead to estimation errors due to
diverse spatial-temporal variations of air pollutants.
While high-resolution ambient measurements alone
cannot fully represent personal exposure, they can
help reduce exposure misclassification—particularly
in unmonitored or heterogeneous urban areas—by
providing improved area-level estimates for exposure
modeling and epidemiological studies.

To mitigate estimation errors in air pollution levels in
unmonitored areas, it is essential to account for spatial-
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temporal variations of air pollutants. Previous studies
have reported that the spatial-temporal variation of air
pollutants differs across spatial scales. On a regional
scale, many studies in China reported spatial-temporal
variations in areas >100,000 km” at a regional scale (Hu
et al. 2014; Yang and Christakos 2015; Zhao et al. 2013).
On a city-scale, spatial-temporal distributions were
reported in Beijing (Chen, Tang, and Zhao 2015; Ji,
Wang, and Zhuang 2019; Xu et al. 2019) and
Guangzhou, China (Li et al. 2014); Vancouver
(Marshall, Nethery, and Brauer 2008), and Toronto,
Canada (Su et al. 2010); Ankara, Turkey (Raja et al.
2018); and Kaunas, Lithuania (Dédelé and Miskinyté
2019). Air pollutant concentrations can be easily
affected by climatic conditions, traffic intensity, popula-
tion density, and the distance from the sources (Merbitz,
Fritz, and Schneider 2012). In smaller areas, it is possible
to identify high spatial-temporal variation, including
the effects of these factors, more accurately. In exposure
assessment, the interpolation method, dispersion
model, and land use regression model are commonly
used to estimate personal exposure to air pollutants by
accounting for high spatial resolution in unmonitored
areas (Arunachalam et al. 2014; Hoek et al. 2008).

The Korean government has disclosed the hourly
concentrations of criteria air pollutants, including par-
ticulate matter with an aerodynamic diameter of
<2.5um and <10 um (PM,s and PM;,, respectively),
nitrogen dioxide (NO,), carbon monoxide (CO), sulfur
dioxide (SO,), ozone (O3), lead, and benzene at the
AQMSs. Air quality in Seoul, with an area of 605.4
km?, is monitored by 25 AQMSs. Seoul consists of 25
administrative districts referred to as “gu”; each gu has
one urban AQMS. However, data from a single AQMS
in each gu may not be sufficient to estimate air pollution
in that area. An additional AQMS is operated at 15
roadside air quality monitoring networks using vehicles
equipped with standard monitoring methods that are
the same as the AQMS. These mobile monitoring meth-
odologies were easily applied to obtain air quality data
with high spatial resolution (Tessum et al. 2018).
Determining spatial-temporal variations in the unmo-
nitored areas of each gu is useful to estimate air pollu-
tant exposure.

The aim of this study was to identify seasonal spatial
variation of five air pollutants (PM, 5, PM,;y, NO,, CO,
and O;) at the city-scale using 25 AQMSs and small-
scale areas (1 km?) at one of the 25 administrative dis-
tricts in Seoul, Korea. In this study, the spatial-temporal
variation of air pollutants was identified at a city-scale
and smaller spatial scales in Seoul, Korea, over one year.
Spatial units were compared with standard monitoring
methods in city-, district-, and small-scale areas.

Materials and methods
Study area

Seoul, with an area of 605.4 km?, consists of 25 admin-
istrative districts referred to “gu.” Each of 25 districts
operates one urban AQMS to monitor ambient air qual-
ity in Seoul. An additional AQMS is operated at 15
roadside air quality monitoring networks using vehicles
equipped with standard monitoring methods, the same
as AQMS. The area of each gu ranges from 10—47 km”.
The population of Seoul was 9,638,799 in 2023, and each
gu had a population in the range of 131,793—660,025
(https://kosis.kr/index/index.do). The population per
area of each gu in Seoul ranged from 6,292-25,244
people per km?.

Guro-gu, with an area of 20.12 km?, is one of the 25
gu in Seoul and had a population of 415,651 in 2023
(https://kosis.kr/index/index.do). The population per
area of Guro-gu was 20,659 people per km”. The test-
bed area for small-scale measurement was chosen based
on both practical and scientific considerations. Initially,
a 5x 5km” area centered on the existing urban AQMS
in Guro-gu was designated. Grid cells outside the
administrative boundary of Guro-gu were excluded to
ensure consistency within a single jurisdiction, and
eight in-situ monitoring sites (IMSs) were finally
selected. The total of eight IMSs, each with an area of
1km?, in thr test-bed area were selected to measure the
air quality for un-monitored areas in Guro-gu. The
locations of the 25 AQMSs and eight IMSs in Seoul are
shown in Figure 1. The geographical coordinates of
monitoring sites in Seoul are shown in Table S1. The
characteristics of the eight IMSs differed. Location 1 was
in the vicinity of the highway, and thus had high traffic
intensity. Location 2 was in the vicinity of a liquefied
petroleum gas charge station. Location 3 was near
a train station (Guro station). Location 4 was in
a residential area nearby a barbeque restaurant and
parking lot. Location 5 was in a park (Guro Geori
park). Location 6 was in a residential area in the vicinity
of a restaurant that utilized charcoal. Location 7 was in
a large parking lot of the Korea University Hospital.
Location 8 was in a predominantly business area.

Air pollutant concentrations

The air quality data of five criteria air pollutants
(PM,.5, PM;4, NO,, CO, and O;) were monitored by
25 AQMSs and eight IMSs in Seoul from
December 2017—December 2018. The sampling peri-
ods were classified into winter (December 2017-
February 2018), spring (March-June 2018), summer
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Figure 1. Locations of monitoring sites in Seoul. Yellow stars represent air quality monitoring stations (AQMSs) and blue squares

represent in-situ monitoring sites (IMSs).

(June-August 2018), and autumn

December 2018).

(September—

AQMS data

Hourly air pollutant concentrations in 25 AQMSs were
downloaded from a website managed by the Korea
Environment Corporation (http://www.airkorea.or.kr/
web). The AQMSs were equipped with national stan-
dard method monitors for five criteria pollutants.
Hourly air pollutant concentrations were measured by
automatic PM monitors based on the beta (p) attenua-
tion method, a NO, monitor based on the chemilumi-
nescent method, a CO monitor based on the non-
dispersive infrared absorption method, and an O; moni-
tor based on the ultraviolet photometric method. The
detection limits of monitors at AQMSs were 5 pg/m” for
PM, .5, 10 ug/m’ for PM;q, 0.1 ppb for NO,, 0.05 ppm
for CO, and 2 ppb for O;. Valid data were selected based
on the national quality assurance/quality control (QA/
QC) operation guidelines published by the Korea
Ministry of Environment (https://www.airkorea.or.kr/
web/board/3/267/:pMENU_NO=145).

IMS data

In-situ measurements were performed on eight fixed
monitoring sites within the test-bed area in Guro-gu,
Seoul. A vehicle with standard method monitors
used by the AQMSs was positioned at eight IMSs
to obtain air pollutant concentrations. All IMS mea-
surements strictly adhered to the installation and
operation guidelines of the Korean Ministry of
Environment and employed the same Korean Air
Quality Monitoring Standard (KAMST) equipment
used in Seoul’s roadside AQMS network. Hourly
concentrations of five air pollutants were measured

in each IMS for approximately 10 consecutive days
in each season. The measurements were repeated for
12 weeks per season for four seasons at the eight
IMSs. Detailed measurement schedules for the eight
IMSs are provided in Table S2. QA/QC for measure-
ments was conducted once per season for one week
based on the national QA/QC operation guidelines
published by the Korea Ministry of Environment
(https://www.airkorea.or.kr/web/board/3/267/?
pMENU_NO=145).

Spatial autocorrelation analysis

Moran’s index (Moran’s I) was used as an indicator of
spatial autocorrelation to identify the homogeneity and
heterogeneity of air pollutants at different monitoring
sites (Fang et al. 2015). Spatial autocorrelations were
analyzed by the global index, which represented the
overall spatial autocorrelation at all monitoring sites
(Moran 1948), and the local index, which represented
the local spatial autocorrelation at each specific moni-
toring site (Anselin 1995).

Global spatial autocorrelation

Global Moran’s I (GMI) was used to determine the
overall spatial autocorrelation of air pollutant concen-
trations across the entire monitoring sites and ranged
from -1 to 1; if GMI was >0 (0 < GMI < 1), it repre-
sented a positive spatial autocorrelation. A larger GMI
denoted that the area had a stronger spatial agglomera-
tion with a similar concentration in the adjacent area.
In contrast, if GMI was<0 (-1 <GMI<0), it repre-
sented a negative spatial autocorrelation, which was
spatially dispersed and implied that the area had less
spatial agglomeration with a different concentration in
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the adjacent area. If GMI = 0, air pollutant concentra-
tions were randomly distributed, and there was no
spatial autocorrelation. GMI was calculated using

eq (1):

_ D oim1 2o wiilxi — %) (x —%)
B w2 (i — x)* P Z;:l Wij
where 7 is the number of monitoring sites; x; and x; are

air pollutant concentrations of spatial i and j monitoring
sites, respectively; x is the mean x; and wj; is the spatial

GMI

(1)

weight matrix that represents the spatial relationship
between spatial i and j sites. If wj; is 1, the spatial units
i and j are adjacent; otherwise, w;; is 0.

The Z values of the standardized statistic were used to
test the significance of global spatial autocorrelations
and calculated according to egs (2), (3), and (4).

_ 1—E()
V() @
B(I) = - — 6
V(1) = E(P) — [E(D)]? (4)

where E(I) and V(I) are the expected values and var-
iances of the Moran’s I, respectively.

Among the above equations, the significance level of
the global Moran’s I can be measured by Z(I). At the
0.05 significance level, Z > 1.96 represents a positive
spatial autocorrelation between spatial units, and
—-1.96 < Z < 1.96 indicates that the spatial autocorrela-
tion is not obvious. If Z < -1.96, then a negative auto-
correlation exists between spatial units, and the attribute
value tends to be distributed.

Local spatial autocorrelation

Local Moran’s I (LMI) was used to determine the local
spatial autocorrelation of air pollutant concentrations at
each monitoring site. A high positive LMI implied that
the concentrations were similar to those in the sur-
rounding neighborhood; high-high clusters (i.e., high
values in a high-value neighborhood) and low-low clus-
ters (i.e., low values in a low-value neighborhood).
Meanwhile, a high negative LMI implied that a spatial
autocorrelation was obviously different from the con-
centrations at the surrounding monitoring sites; spatial
outliers included high-low (i.e., a high value in a low-
value neighborhood) and low-high (i.e., a low value in
a high-value neighborhood) outliers. The LMI was cal-
culated according to eq (5):

(xi — X) ZJ’;:’ Wij (xj - ’_C)
%Z?:l (xi — 9_6)2

where 1, x;, xj, X, and w;; are the same as the parameters
for GMIL.

The standardized statistic of LMI can also be measured
by Z. At the 0.05 significance level, Z > 1.96 shows that
sites with high concentrations were surrounded by sites
with high concentrations (i.e., high—high) and that sites
with low concentrations were surrounded by sites with
low concentrations (low—low). In contrast, Z <—1.96
shows that sites with high concentrations were sur-
rounded by sites with low concentrations (high—low)
and that sites with low concentrations were surrounded
by sites with high concentrations (low—high). When Z =
0, air pollutant concentrations were randomly distribu-
ted. When —-1.96 < Z < 1.96, the spatial autocorrelation
was not significant.

LMI = (5)

Statistical analysis

All calculations and statistical analyses were conducted
using R software (version 4.4.3). Air pollutant concentra-
tions at monitoring sites were compared by season to
determine significant differences in means using one-way
analysis of variance (ANOVA) and Tukey’s post-hoc tests.
Results with p-value <0.05 was considered to indicate
statistical significance for two-sided statistical tests.
Pearson correlation coefficients (r) between air pollutants
in AQMSs and IMSs were calculated using Pearson corre-
lation analysis. The correlations were classified into three
categories: weak, moderate, and strong correlations. The
absolute value of the coefficient (|r|) ranged from 0—0.3 for
weak correlations, 0.3—0.6 for moderate correlations, and
0.6—1.0 for strong correlations. Spatial autocorrelation ana-
lyses using GMI and LMI were conducted using the
moran.test() and localmoran() function in the package
“spdep” (Bivand et al. 2025) of R software.

In the box plots, mean and median values were repre-
sented by a dotted line and a plain line, respectively. Box
limits represented the 25th and 75th percentiles, and the
whiskers extended to the 10th and 90th percentiles.
Circles above the 90th percentile represented the 95th
percentile, and circles below the 10th percentile repre-
sented the 5th percentile. Box plots were drawn using
SigmaPlot 10.0 (Systat Software, San Jose, CA, U.S.A.).

Results
Seasonal characteristics of air pollutants

The hourly concentrations of five air pollutants in 25
AQMSs, one AQMS, and eight IMSs in four seasons are



shown in Figure 2. The average hourly concentrations
among the monitoring sites were significantly different
across the four seasons (p < 0.01). The hourly air pollu-
tant concentrations at the 25 AQMSs were significantly
different among the four seasons (p < 0.001). The highest
PM, 5, PM;o, NO,, and CO concentrations at the 25
AQMSs were observed in the winter, whereas the lowest
concentrations were observed in the summer. Conversely,
the highest O; concentrations at the 25 AQMSs were
recorded in the summer, whereas the lowest concentra-
tions were noted in the winter. Hourly air pollutant con-
centrations at IMSs were significantly different in the four
seasons (p < 0.001), and the seasonal characteristics of air
pollutants at IMSs were similar to those at the 25 AQMSs.

The hourly mean PM, 5 concentrations in the summer
and autumn at the IMSs were significantly higher than
those at the 25 AQMSs (p <0.001), whereas the hourly
mean PM, s concentrations in the spring at the IMSs and
25 AQMS:s differed slightly (p = 0.07). The hourly mean
PM,, concentrations across four seasons at the IMSs were
significantly higher than those at the 25 AQMSs (p <
0.001). The hourly mean NO, concentrations in the win-
ter, spring, and summer at the IMSs were significantly
higher than those at the 25 AQMSs (p < 0.05). The hourly
mean CO concentrations in four seasons at the IMSs were
significantly higher than those at the 25 AQMS (p <
0.001). However, the hourly mean O; concentrations in
the spring and summer at the IMSs were significantly
lower than those at the 25 AQMSs (p<0.001).
Descriptive statistics of hourly mean air pollutant
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concentrations at one AQMS and the IMSs in Guro-gu
are shown in Tables S3-S7. The hourly mean air pollutant
concentrations at the AQMS and IMSs in Guro-gu were
significantly different in all seasons (p < 0.05).

The noncompliance rates of the Korean air quality
standards (KAAQSs) of air pollutants at AQMSs and
IMSs are shown in Table 1. The noncompliance rates for
the PM, 5 KAAQS (with a 24-hr mean of 35 pg/ m?) were
approximately 30% in the winter and spring at all sites.
The PM,;, KAAQS did not exceed the 24-hr mean of
100 pug/m” in the summer at any site. The NO, and CO
concentrations in the 25 AQMSs and IMSs in all seasons
did not exceed the KAAQSs. Noncompliance rates for
the PM;o KAAQS at the IMSs were higher than at the 25
AQMSs in the winter, spring, and autumn, whereas
noncompliance rates for the O3 KAAQS at the IMSs in
the summer were lower than at the 25 AQMSs.

Seasonal correlations between air pollutants

Seasonal correlations between air pollutants at the 25
AQMSs and the IMSs are shown in Table 2. The seaso-
nal correlation analysis was conducted to examine how
the spatial relationships of pollutant concentrations vary
across the four seasons and between monitoring net-
work scales. The PM concentrations in the AQMSs and
the IMSs showed significant positive correlations with
NO, and CO, especially in the winter and autumn
(r values > 0.5). PM, 5 concentrations in AQMSs and
the IMSs showed strong positive correlations with
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Figure 2. Hourly concentrations of air pollutants at 25 air quality monitoring stations (AQMSs) (blue), one AQMS in Guro-gu (pink), and

eight in-situ monitoring sites (IMSs) in Guro-gu (white).
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Table 1. The noncompliance rates (%) of the Korean ambient air quality standards (KAAQSs) of air
pollutants by season. AQMS - air quality monitoring station, IMS - in-situ monitoring station.

Air pollutant Site Winter Spring Summer Autumn
PM, 5 (24-h) 25 AQMSs 325 273 6.6 7.1
(35 pug/m®) Guro AQMS 35.1 33.8 5.8 125
IMSs 31.7 341 43 12.5
PM;, (24-h) 25 AQMSs 5.9 7.0 0 3.2
(100 pg/m?) Guro AQMS 9.3 10.4 0 42
IMSs 20.7 12.2 0 5.6
05 (8-h) 25 AQMSs 0 3.1 6.1 0
(0.06 ppm) Guro AQMS 0 7.3 12.1 0
IMSs 0 34 2.0 0
03 (1-h) 25 AQMSs 0 0.3 1.7 0
(0.1 ppm) Guro AQMS 0 0.6 2.5 0
IMSs 0 0.2 0.3 0

Table 2. Pearson correlation coefficients (r values) among five air pollutants in 25 air quality monitoring stations (AQMSs) in Seoul
(gray) and eight in-situ monitoring sites (IMSs) in Guro-gu, Seoul (white) by season.

PM; 5 PM;o NO, co 03 PM, 5 PMyq NO, co 03
Winter Spring
PM, 5 1 0.91** 0.57** 0.63** —0.34** 1 0.78** 0.47** 0.62** —-0.003
PMyo 0.94%* 1 0.48** 0.57** —0.24** 0.77** 1 0.39%* 0.49%* 0.10*
NO, 0.55%* 0.49** 1 0.78** —0.78** 0.16* 0.18** 1 0.66** —0.50**
co 0.58** 0.57*%* 0.63*%* 1 —0.57** 0.35%* 0.34** —0.43*%* 1 —0.32**
05 —-0.06* -0.03 —0.63*%* —0.26** 1 0.04 0.11* —0.55%* —0.29%* 1
Summer Autumn
PM, 5 1 0.94** 0.41** 0.37** 0.35%* 1 0.76** 0.64** 0.66** —0.28**
PMyo 0.90** 1 0.42%* 0.38** 0.36** 0.79** 1 0.48** 0.45%* —0.22**
NO, 0.32%* 0.37** 1 0.40%* —0.08* 0.61** 0.48** 1 0.71** —0.65**
Cco 0.16* 0.21** 0.33** 1 0.01 0.63** 0.50** 0.76** 1 —0.49**
03 0.27** 0.30%* —-0.04 0.03 1 —0.22%* —0.21** —0.50%* —0.44** 1

**Estimates are statistically significant at p < 0.001.
*Estimates are statistically significant at p < 0.05.

Table 3. Global spatial autocorrelations of air pollutants at the 25 air quality monitoring stations (AQMSs) and eight in-situ monitoring

sites (IMSs) over four seasons. GMI - global Moran’s index.

City-scale at 25 AQMSs

Small-scale at 8 IMSs

GMI Winter Spring Summer Autumn Winter Spring Summer Autumn
PM, 5 0.02 0.03 0.06 0.23* —-0.01 —-0.30 -0.29 —-0.33
PMso -0.18 -0.26 0.02 0.13 -0.07 -0.32 -0.29 -0.15
NO, -0.17 —-0.04 0.12 0.01 0.01 —-0.35 —-0.20 -0.12
co 0.09 —-0.18 -0.16 0.07 —-0.36 0.16 —-0.12 —-0.35
03 0.27* 0.09 0.13 0.21* —-0.11 0.21* -0.19 0.19*

*Estimates are statistically significant at p < 0.05.

NO, and CO concentrations in autumn (r values > 0.6).
However, O; at the IMSs had significant negative weak
correlations with PM in the winter and autumn,
whereas positive correlations were observed in the sum-
mer. Strong negative correlations between O; and NO,
were observed in the winter, whereas weak correlations
were observed in the summer. In the winter, the corre-
lation between Os and PM concentrations at the AQMS
sites was nearly random, with coefficients close to zero,
whereas the IMS sites showed stronger negative correla-
tions, with coefficients ranging from —0.2 to —0.3. This
finding demonstrates that the strength and nature of
inter-pollutant relationships can vary substantially
depending on the monitoring scale.

Spatial autocorrelations by area scale

Global spatial autocorrelations at the 25 AQMSs (city-
scale) and eight IMSs (small-scale) are shown in Table 3
using GMI. Significant global spatial homogeneity of
PM, 5 at the 25 AQMSs was observed in the autumn,
with a positive GMI (p < 0.05). However, PM, 5 concen-
trations in the winter and spring at the 25 AQMSs were
randomly distributed with a GMI of approximately 0.
PM,, concentrations in the winter and spring at the 25
AQMSs were spatially dispersed with a negative GMI.
O3 concentrations in the winter and autumn at the 25
AQMSs were spatially agglomerated with a significant
positive GMI (p < 0.05). Local spatial autocorrelations at



each AQMS in Seoul are shown in Tables S8-S12
using LML

PM, s and PM,, at the IMSs across all seasons had
negative GMI, indicating that they were spatially dis-
persed. PM, s, PM,, and NO, concentrations in the
winter at the IMSs were randomly distributed, with
a GMI of approximately 0. PM;4 concentrations in the
winter and spring at the IMSs were spatially dis-
persed, with a negative GMI. O; concentrations in
the spring and autumn at the IMSs were spatially
agglomerated, with a significant positive GMI (p <
0.05). NO, and CO concentrations in the summer
and autumn at the IMSs were spatially distributed,
with a negative GML.

The local spatial autocorrelations at the eight IMSs
are shown in Figure 3. Patterns of the local spatial
autocorrelation at each monitoring site differed by sea-
son. PM, 5 concentrations at locations 3, 5, and 8 were
spatially dispersed in the winter, with a negative GMI,
whereas they were spatially agglomerated in the summer
and autumn, with a positive GMI. PM, concentrations
at location 3 and 8 were spatially dispersed in the winter,
with a negative GMI, whereas they were randomly dis-
tributed in the autumn, with a GMI of approximately 0.
O; concentrations at location 7 were spatially agglom-
erated in all seasons.

Discussion

In this study, small-scale monitoring was conducted
using the same standard instruments as those employed
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in the government-managed AQMS to ensure data
accuracy and enable direct comparison between
AQMS and IMS measurements. Although low-cost sen-
sors can provide practical and cost-effective alternatives
for air quality assessment, their accuracy is generally
lower than that of reference methods (Shin et al.
2024). By employing national reference instruments
managed by the Seoul Metropolitan Government
Research Institute of Public Health and Environment,
measurement uncertainty was minimized and data har-
monization between AQMS and IMS was secured. To
capture fine-scale spatial variability of roadside air pol-
lution, the Ministry of Environment has previously
employed vehicles equipped with reference instruments
for real-time monitoring (Kim et al. 2015). Similarly, in
this study, a monitoring vehicle equipped with standard
instruments was stationed at eight sites within a 1 km?
test area, providing high-resolution air quality data that
complemented the AQMS observations. This comple-
mentarity underscores the value of integrating AQMS
data, which provide long-term continuity suitable for
evaluating temporal trends and health impacts, with
IMS data, which offer high spatial resolution essential
for identifying localized variations and sources. Such
a dual-use approach ultimately enhances the accuracy
of exposure assessments and improves the reliability of
epidemiological findings.

There were distinct seasonal patterns of air pollutant
concentrations. High PM concentrations were observed
in the winter, followed by spring. High PM concentra-
tions in Korea have typically been observed in the winter
and spring (Kim et al. 2020), which is consistent with
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Figure 3. Local Moran’s | (LMI) values of air pollutants in eight in-situ monitoring sites (IMSs) by season. Blue denotes a positive spatial
autocorrelation, red denotes a negative spatial autocorrelation, and white denotes no spatial autocorrelation.
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the seasonal variation observed in the present study.
Such air quality is affected by the long-range transport
of air pollutants from East Asia, regional sources, and
meteorological conditions in the Korean Peninsula
(Kim et al. 2018). Meanwhile, low PM concentrations
were observed in the summer, when the PM concentra-
tions were reduced by a washout effect during the rainy
season, along with rapid air dispersion (Kim and Kim
2000).

Noncompliance rates of the KAAQS of PM, 5 at
AQMSs and IMSs were >30% in the winter and the
spring. A PM, s advisory in Seoul, Korea, was issued
10 times (winter: seven times, spring: twice, and
autumn: once) during the sampling periods. In a PM, 5
advisory, personal exposure to PM, s was affected by
high outdoor PM, s concentration due to high PM, 5
infiltration (Guak and Lee 2018). PM, 5 persisted in
ambient air for a long period due to the low tempera-
ture, reduced wind speed, and less air circulation in the
winter (Li et al. 2021). Therefore, the seasonal trend of
ambient PM, 5 levels should be considered when mak-
ing policies to reduce personal exposure to air pollution.

High O; concentrations were observed in the spring
and summer, whereas low O5; concentrations occurred
in the winter. O; is generated by a photochemical reac-
tion with O precursors (oxides of nitrogen [NOy] and
volatile organic compounds [VOCs]). O3 concentra-
tions were affected by meteorological conditions due
to higher air temperature and intense solar irradiation,
which trigger photochemical reactions with O; precur-
sors (NOy and VOCs) in the spring and summer more
so than in the winter (Hwang and Park 2019; Ribas and
Peniuelas 2004). On the other hand, during the winter,
the rate of photochemical reactions with O3 was slow
due to the NOj titration effect (Jhun et al. 2015). In
other studies in Korea, O; levels in the spring and
summer were significantly higher than those in the
winter (Hwang and Park 2019; Vellingiri et al. 2015).
These results are consistent with those in China (Chen
etal. 2017) and Turkey (Kasparoglu, Incecik, and Topcu
2018).

High NO, and CO concentrations were observed in
the winter and autumn, and low NO, concentrations
occurred in the summer and spring. The hourly mean
NO, and CO concentrations in AQMSs and IMSs did
not exceed the corresponding KAAQS. The highest NO,
concentration can be explained by the weak solar irra-
diation available for photochemical conversion to Os,
along with stagnant atmosphere conditions (Li et al.
2012). In contrast, intense light irradiation also caused
low concentrations of NO, and other nitrogen oxides
(Markovi¢ et al. 2008). NO, is a gaseous pollutant with
motor vehicle emissions as a main source (Costa et al.

2017). CO is a colorless, nonirritating, odorless, and
tasteless gas generated by the incomplete combustion
of carbon compounds such as burning gasoline, wood,
propane, charcoal, or other fuel (Serhaug et al. 2006).

AQMS data in one administrative district of Seoul
(Guro-gu) were significantly different from IMS data
surrounding the AQMS. The hourly mean PM and
NO, concentrations at the IMSs were generally higher
than those at the Guro AQMS. Especially, hourly mean
CO concentrations in four seasons at the IMSs were
approximately two-fold higher than at the AQMS.
High CO concentrations were mainly due to on-road
vehicle emissions (Ghaffarpasand et al. 2020). However,
the O; concentrations at the IMSs in the spring and
summer were significantly lower than those at the
Guro AQMS. The rate of exceeding the KAAQS for O3
at the Guro AQMS in the summer was more than two-
fold higher than that at the IMSs, which may have been
affected by the characteristics of the monitoring loca-
tion; the IMSs were located near streets and parking lots,
whereas the Guro AQMS was located on a building
rooftop. A study found that the O3 concentrations on
a rooftop were higher than those on the street level
(Park et al. 2015; Vikevi et al. 1999). In addition, each
IMS was likely influenced by emission sources specific
to its geographic characteristics, which may have con-
tributed to the relatively higher concentrations observed
compared to the AQMS.

The correlations between air pollutants differed by
season. Stronger positive correlations between PM, 5
and gaseous pollutants (e.g., NO, and CO) were
observed in the autumn than in other seasons. This
result implied that increases in NO, and CO concentra-
tion affected PM, 5 concentrations in the autumn. High
correlations between PM and gaseous pollutants in the
autumn were observed in China (Li et al. 2017); the
results were similar to those obtained in the present
study, with low PM concentration in the autumn.
However, O; had weaker correlations with PM in the
winter and spring compared to the correlations in the
summer. As mentioned above, this was mainly asso-
ciated with the photochemical reactions as properties of
Oj; related to climate and meteorological conditions
(Ribas and Penuelas 2004). PM pollution was severe in
the winter and spring, whereas it was mild in the sum-
mer. In the winter and spring, there was low tempera-
ture and weak light intensity, which resulted in fewer
reactions between PM and O;. In the summer, high
temperatures and strong light intensity lead to an
increase in O; concentration due to increase photoche-
mical reactions. Thus, seasonal characteristics between
PM and O; need to be considered on taking preventive
control policies of air pollution.



This study observed significant seasonal variations and
correlations in air pollutant concentrations across differ-
ent spatial scales over the course of one year. Air pollutant
concentrations are a critical input for population expo-
sure modeling. However, previous studies have often
relied on city-scale data from AQMSs as surrogate mea-
sures for exposure, highlighting the need for improve-
ments in precision and accuracy (Guak et al. 2021).
Compared with AQMSs, which primarily measure
urban background concentrations, reflecting the seasonal
and spatial variability of air pollutants more closely
related to actual living environments can enhance the
accuracy of exposure modeling. Given that spatiotem-
poral variability can substantially influence the outcomes
of exposure models, future studies should prioritize pro-
viding finer-scale monitoring data to improve the relia-
bility and robustness of exposure assessments.

In this study, the Moran Index was applied as
a method to assess spatial autocorrelation by evaluating
the degree of similarity between a given region and its
neighboring areas. Global spatial autocorrelation can be
used to identify whether the overall sampling areas have
spatial autocorrelations, and, if so, to reflect the correla-
tion intensity. In the 25 AQMSs in Seoul, GMIs of PM, 5
and O; were close to zero in the spring and were sig-
nificantly positive in the autumn. This result implies
a random distribution in the spring and spatial agglom-
eration in the autumn, possibly related to seasonal pat-
terns of PM, s and O3 concentrations. Low PM, 5 and
O; concentrations were observed in the autumn,
whereas high PM, 5 and O; concentrations were noted
in the spring. Spatial autocorrelation was affected by
seasonal patterns of air pollutants (Zhou et al. 2021).

Global spatial autocorrelation patterns of PM, 5 were
different at the city-scale in 25 gu of Seoul and small-
scale areas of 1 km? in Guro-gu, Seoul. Global autocor-
relations of PM, 5 in all seasons were spatially homo-
genized with positive GMIs at the 25 AQMSs. However,
global spatial autocorrelations of PM, 5 in all seasons
were spatially dispersed with negative GMIs at the IMSs.
AQMS data at the city-scale were limited to represent
air quality in smaller areas, including unmonitored loca-
tions. Hence, spatial autocorrelation should be consid-
ered at a smaller scale than the city-scale.

Seasonal local spatial patterns of homogeneity and
heterogeneity of air pollutants were differently
observed in a spatial smaller scale using local spatial
autocorrelation. It was difficult to generalize and
identify the local spatial autocorrelation patterns of
air quality in each monitoring area. Various spatial
variations could be affected by significant complex
factors, depending on local emission sources, climate
conditions, or meteorological occurrences, such as

JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION 9

local circulations and topographic features (Wang
et al. 2014). Air pollutant concentrations were spa-
tially heterogeneous in areas with different emission
sources and varying air pollutant dispersion charac-
teristics (Valari et al. 2020). Various spatial autocor-
relations in different areas have been reported in
other studies (Shen et al. 2019; Wang et al. 2015;
Xu et al. 2019).

For future population exposure assessments, when
applying pollutant concentrations derived from small
grid units (e.g., 1 km?) that account for spatial autocor-
relation identified in this study, it is important to inter-
pret the results not only in terms of spatial structure but
also in relation to the characteristics of the exposed
population. For example, population density, age distri-
bution, and time-activity patterns within each grid may
influence actual exposure levels, even if surrounding
concentrations are spatially correlated. A previous
study demonstrated that considering both pollutant
concentrations and population density can improve
the accuracy of population-level exposure assessments
(Woo et al. 2022). Therefore, when grid-based pollutant
concentrations are used in exposure research, integrat-
ing demographic and behavioral factors into the inter-
pretation of spatial autocorrelation results may provide
a more comprehensive understanding of population
exposure disparities.

The limitations of this study were several. Although
the eight grids were selected based on the urban
AQMS in Guro-gu, the testbed configuration was cen-
tered on the AQMS and thus spatially concentrated in
the eastern part of the district. However, each IMS was
located in a site with distinct geographic characteris-
tics, allowing us to reflect environmental heterogene-
ity despite the spatial concentration. Moreover,
because the IMS sites were placed closer to human
activity zones—such as roadside environments—they
were able to capture finer high-resolution pollution
patterns that the rooftop-located AQMS might not
fully detect. Full trajectory-based exposure tracking
(e.g., using personal GPS or wearable sensors) pro-
vides the most accurate assessment, but it is often
infeasible in large population studies due to privacy,
cost, and logistical constraints. In this context, high-
resolution ambient monitoring offers a practical com-
promise, enabling refined exposure estimates at the
population level and reducing misclassification in spa-
tially heterogeneous areas. This study is an important
step toward improving area-level exposure estimation.
Future studies could build upon this framework by
integrating spatial concentration data with personal
movement patterns or indoor exposure models to
construct more comprehensive exposure profiles.
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Conclusion

Seasonal spatial variations of five air pollutants were
identified in city-scale and small-scale areas in Seoul
using measurements with standard monitoring
methods over one year. Seasonal spatial autocorrela-
tions of air pollutant concentrations at the 25
AQMSs in the city-scale were different from those
in smaller-scale (1km?) areas that were obtained
from the eight IMSs. Seasonal patterns of spatial
autocorrelation for air pollutants at the city-scale
did not reflect small-scale variations. These findings
highlight the limitations of relying solely on AQMS
data for exposure assessment and underscore the
value of high-resolution data to reduce estimation
errors. This study offers a framework for improving
air quality management and exposure assessment
strategies by accounting for spatial-temporal varia-
tions, especially in areas lacking dense monitoring
networks. Therefore, our findings provide evidence
that seasonal spatial variations of air pollutants at
a small scale should be considered to assess more
accurate estimations of personal exposure to air pol-
lutants with implications for human health.
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