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ABSTRACT
Exposure to air pollutants is associated with significant health effects. Accurate exposure assessment 
remains a critical yet challenging aspect of environmental health research. Although air quality 
monitoring station (AQMS) data are commonly used as a surrogate for personal exposure, diverse 
spatial-temporal variations can lead to significant exposure misclassification. This study aimed to 
identify the seasonal spatial variation of five air pollutants (PM2.5, PM10, NO2, CO, and O3) at city and 
small spatial scales (1 km2) in Seoul, Korea, using data from the AQMSs and in-situ monitoring sites 
(IMSs) for high-resolution measurements. Measurements were conducted across four seasons over 
one year, covering city-, district-, and small-scale spatial units, with a detailed focus on a 1 km2 area 
within one administrative district. The air pollutant concentrations were obtained from the 25 AQMSs 
in each district. Fine-scale measurements were carried out at eight IMSs within a 1 km2 area 
surrounding a single AQMS in Guro-gu, Seoul. To enable direct comparison, measurements from 
the AQMS and IMS were simultaneously collected following standard monitoring protocols. Moran’s 
index was used as an indicator of spatial autocorrelation to identify the homogeneity and hetero
geneity of air pollutants by spatial units. Concentrations of pollutants at IMSs were overall higher 
than those at nearby the AQMS, except for O3 concentrations in the spring and summer. Seasonal 
spatial autocorrelation patterns in city-scale areas did not reflect variations in small-scale areas. These 
findings highlight the limitations of relying solely on AQMS data for exposure assessment and 
underscore the value of integrating high-resolution data to reduce estimation errors. This study 
provides a framework for enhancing air quality management and exposure assessment strategies by 
accounting for spatial-temporal variations, especially in areas lacking dense monitoring networks.

Implications: This study integrates city-scale air quality monitoring station (AQMS) data with 
high-resolution in-situ measurements to reveal discrepancies in seasonal spatial patterns of air 
pollutants across different spatial scales in Seoul, Korea. By directly comparing AQMS and IMS data 
using standard monitoring methods, it demonstrates that commonly used AQMS-based exposure 
estimates may significantly underestimate pollution levels in small-scale urban environments. This 
high-resolution approach highlights the critical need for incorporating fine-scale monitoring to 
improve personal exposure assessment in areas with sparse monitoring coverage.
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Introduction

Air pollutant concentrations are monitored by the 
national air quality monitoring station (AQMS). 
Exposure to air pollutants has been linked to 
increased adverse health effects (Cohen et al. 2017; 
Costa et al. 2017; Mills et al. 2015; Sørhaug et al.  
2006). Epidemiological studies have often used air 
pollutant concentrations at AQMSs as a surrogate 
for personal exposure because of the limited resources 
for direct measurements (Atkinson et al. 2013; Chen 
et al. 2018). However, this approach may underesti
mate health risks, as combined indoor and outdoor 

PM2.5 exposure has been associated with higher mor
tality risk than outdoor exposure alone (Dong et al.  
2020). This can lead to estimation errors due to 
diverse spatial–temporal variations of air pollutants. 
While high-resolution ambient measurements alone 
cannot fully represent personal exposure, they can 
help reduce exposure misclassification—particularly 
in unmonitored or heterogeneous urban areas—by 
providing improved area-level estimates for exposure 
modeling and epidemiological studies.

To mitigate estimation errors in air pollution levels in 
unmonitored areas, it is essential to account for spatial- 
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temporal variations of air pollutants. Previous studies 
have reported that the spatial-temporal variation of air 
pollutants differs across spatial scales. On a regional 
scale, many studies in China reported spatial–temporal 
variations in areas >100,000 km2 at a regional scale (Hu 
et al. 2014; Yang and Christakos 2015; Zhao et al. 2013). 
On a city-scale, spatial–temporal distributions were 
reported in Beijing (Chen, Tang, and Zhao 2015; Ji, 
Wang, and Zhuang 2019; Xu et al. 2019) and 
Guangzhou, China (Li et al. 2014); Vancouver 
(Marshall, Nethery, and Brauer 2008), and Toronto, 
Canada (Su et al. 2010); Ankara, Turkey (Raja et al.  
2018); and Kaunas, Lithuania (Dėdelė and Miškinytė  
2019). Air pollutant concentrations can be easily 
affected by climatic conditions, traffic intensity, popula
tion density, and the distance from the sources (Merbitz, 
Fritz, and Schneider 2012). In smaller areas, it is possible 
to identify high spatial–temporal variation, including 
the effects of these factors, more accurately. In exposure 
assessment, the interpolation method, dispersion 
model, and land use regression model are commonly 
used to estimate personal exposure to air pollutants by 
accounting for high spatial resolution in unmonitored 
areas (Arunachalam et al. 2014; Hoek et al. 2008).

The Korean government has disclosed the hourly 
concentrations of criteria air pollutants, including par
ticulate matter with an aerodynamic diameter of 
≤2.5 µm and ≤10 µm (PM2.5 and PM10, respectively), 
nitrogen dioxide (NO2), carbon monoxide (CO), sulfur 
dioxide (SO2), ozone (O3), lead, and benzene at the 
AQMSs. Air quality in Seoul, with an area of 605.4  
km2, is monitored by 25 AQMSs. Seoul consists of 25 
administrative districts referred to as “gu”; each gu has 
one urban AQMS. However, data from a single AQMS 
in each gu may not be sufficient to estimate air pollution 
in that area. An additional AQMS is operated at 15 
roadside air quality monitoring networks using vehicles 
equipped with standard monitoring methods that are 
the same as the AQMS. These mobile monitoring meth
odologies were easily applied to obtain air quality data 
with high spatial resolution (Tessum et al. 2018). 
Determining spatial–temporal variations in the unmo
nitored areas of each gu is useful to estimate air pollu
tant exposure.

The aim of this study was to identify seasonal spatial 
variation of five air pollutants (PM2.5, PM10, NO2, CO, 
and O3) at the city-scale using 25 AQMSs and small- 
scale areas (1 km2) at one of the 25 administrative dis
tricts in Seoul, Korea. In this study, the spatial–temporal 
variation of air pollutants was identified at a city-scale 
and smaller spatial scales in Seoul, Korea, over one year. 
Spatial units were compared with standard monitoring 
methods in city-, district-, and small-scale areas.

Materials and methods

Study area

Seoul, with an area of 605.4 km2, consists of 25 admin
istrative districts referred to “gu.” Each of 25 districts 
operates one urban AQMS to monitor ambient air qual
ity in Seoul. An additional AQMS is operated at 15 
roadside air quality monitoring networks using vehicles 
equipped with standard monitoring methods, the same 
as AQMS. The area of each gu ranges from 10‒47 km2. 
The population of Seoul was 9,638,799 in 2023, and each 
gu had a population in the range of 131,793‒660,025 
(https://kosis.kr/index/index.do). The population per 
area of each gu in Seoul ranged from 6,292‒25,244 
people per km2.

Guro-gu, with an area of 20.12 km2, is one of the 25 
gu in Seoul and had a population of 415,651 in 2023 
(https://kosis.kr/index/index.do). The population per 
area of Guro-gu was 20,659 people per km2. The test- 
bed area for small-scale measurement was chosen based 
on both practical and scientific considerations. Initially, 
a 5 × 5 km2 area centered on the existing urban AQMS 
in Guro-gu was designated. Grid cells outside the 
administrative boundary of Guro-gu were excluded to 
ensure consistency within a single jurisdiction, and 
eight in-situ monitoring sites (IMSs) were finally 
selected. The total of eight IMSs, each with an area of 
1 km2, in thr test-bed area were selected to measure the 
air quality for un-monitored areas in Guro-gu. The 
locations of the 25 AQMSs and eight IMSs in Seoul are 
shown in Figure 1. The geographical coordinates of 
monitoring sites in Seoul are shown in Table S1. The 
characteristics of the eight IMSs differed. Location 1 was 
in the vicinity of the highway, and thus had high traffic 
intensity. Location 2 was in the vicinity of a liquefied 
petroleum gas charge station. Location 3 was near 
a train station (Guro station). Location 4 was in 
a residential area nearby a barbeque restaurant and 
parking lot. Location 5 was in a park (Guro Geori 
park). Location 6 was in a residential area in the vicinity 
of a restaurant that utilized charcoal. Location 7 was in 
a large parking lot of the Korea University Hospital. 
Location 8 was in a predominantly business area.

Air pollutant concentrations

The air quality data of five criteria air pollutants 
(PM2.5, PM10, NO2, CO, and O3) were monitored by 
25 AQMSs and eight IMSs in Seoul from 
December 2017‒December 2018. The sampling peri
ods were classified into winter (December 2017– 
February 2018), spring (March–June 2018), summer 
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(June–August 2018), and autumn (September– 
December 2018).

AQMS data
Hourly air pollutant concentrations in 25 AQMSs were 
downloaded from a website managed by the Korea 
Environment Corporation (http://www.airkorea.or.kr/ 
web). The AQMSs were equipped with national stan
dard method monitors for five criteria pollutants. 
Hourly air pollutant concentrations were measured by 
automatic PM monitors based on the beta (β) attenua
tion method, a NO2 monitor based on the chemilumi
nescent method, a CO monitor based on the non- 
dispersive infrared absorption method, and an O3 moni
tor based on the ultraviolet photometric method. The 
detection limits of monitors at AQMSs were 5 μg/m3 for 
PM2.5, 10 μg/m3 for PM10, 0.1 ppb for NO2, 0.05 ppm 
for CO, and 2 ppb for O3. Valid data were selected based 
on the national quality assurance/quality control (QA/ 
QC) operation guidelines published by the Korea 
Ministry of Environment (https://www.airkorea.or.kr/ 
web/board/3/267/?pMENU_NO=145).

IMS data
In-situ measurements were performed on eight fixed 
monitoring sites within the test-bed area in Guro-gu, 
Seoul. A vehicle with standard method monitors 
used by the AQMSs was positioned at eight IMSs 
to obtain air pollutant concentrations. All IMS mea
surements strictly adhered to the installation and 
operation guidelines of the Korean Ministry of 
Environment and employed the same Korean Air 
Quality Monitoring Standard (KAMST) equipment 
used in Seoul’s roadside AQMS network. Hourly 
concentrations of five air pollutants were measured 

in each IMS for approximately 10 consecutive days 
in each season. The measurements were repeated for 
12 weeks per season for four seasons at the eight 
IMSs. Detailed measurement schedules for the eight 
IMSs are provided in Table S2. QA/QC for measure
ments was conducted once per season for one week 
based on the national QA/QC operation guidelines 
published by the Korea Ministry of Environment 
(https://www.airkorea.or.kr/web/board/3/267/? 
pMENU_NO=145).

Spatial autocorrelation analysis

Moran’s index (Moran’s I) was used as an indicator of 
spatial autocorrelation to identify the homogeneity and 
heterogeneity of air pollutants at different monitoring 
sites (Fang et al. 2015). Spatial autocorrelations were 
analyzed by the global index, which represented the 
overall spatial autocorrelation at all monitoring sites 
(Moran 1948), and the local index, which represented 
the local spatial autocorrelation at each specific moni
toring site (Anselin 1995).

Global spatial autocorrelation
Global Moran’s I (GMI) was used to determine the 
overall spatial autocorrelation of air pollutant concen
trations across the entire monitoring sites and ranged 
from −1 to 1; if GMI was > 0 (0 < GMI < 1), it repre
sented a positive spatial autocorrelation. A larger GMI 
denoted that the area had a stronger spatial agglomera
tion with a similar concentration in the adjacent area. 
In contrast, if GMI was < 0 (−1 < GMI < 0), it repre
sented a negative spatial autocorrelation, which was 
spatially dispersed and implied that the area had less 
spatial agglomeration with a different concentration in 

Figure 1. Locations of monitoring sites in Seoul. Yellow stars represent air quality monitoring stations (AQMSs) and blue squares 
represent in-situ monitoring sites (IMSs).
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the adjacent area. If GMI = 0, air pollutant concentra
tions were randomly distributed, and there was no 
spatial autocorrelation. GMI was calculated using 
eq (1): 

where n is the number of monitoring sites; xi and xj are 
air pollutant concentrations of spatial i and j monitoring 
sites, respectively; �x is the mean x; and wij is the spatial 
weight matrix that represents the spatial relationship 
between spatial i and j sites. If wij is 1, the spatial units 
i and j are adjacent; otherwise, wij is 0.

The Z values of the standardized statistic were used to 
test the significance of global spatial autocorrelations 
and calculated according to eqs (2), (3), and (4). 

where E(I) and V(I) are the expected values and var
iances of the Moran’s I, respectively.

Among the above equations, the significance level of 
the global Moran’s I can be measured by Z(I). At the 
0.05 significance level, Z > 1.96 represents a positive 
spatial autocorrelation between spatial units, and 
−1.96 < Z < 1.96 indicates that the spatial autocorrela
tion is not obvious. If Z < −1.96, then a negative auto
correlation exists between spatial units, and the attribute 
value tends to be distributed.

Local spatial autocorrelation

Local Moran’s I (LMI) was used to determine the local 
spatial autocorrelation of air pollutant concentrations at 
each monitoring site. A high positive LMI implied that 
the concentrations were similar to those in the sur
rounding neighborhood; high–high clusters (i.e., high 
values in a high-value neighborhood) and low–low clus
ters (i.e., low values in a low-value neighborhood). 
Meanwhile, a high negative LMI implied that a spatial 
autocorrelation was obviously different from the con
centrations at the surrounding monitoring sites; spatial 
outliers included high–low (i.e., a high value in a low- 
value neighborhood) and low–high (i.e., a low value in 
a high-value neighborhood) outliers. The LMI was cal
culated according to eq (5): 

where n, xi, xj, �x, and wij are the same as the parameters 
for GMI.

The standardized statistic of LMI can also be measured 
by Z. At the 0.05 significance level, Z > 1.96 shows that 
sites with high concentrations were surrounded by sites 
with high concentrations (i.e., high‒high) and that sites 
with low concentrations were surrounded by sites with 
low concentrations (low‒low). In contrast, Z <−1.96 
shows that sites with high concentrations were sur
rounded by sites with low concentrations (high‒low) 
and that sites with low concentrations were surrounded 
by sites with high concentrations (low‒high). When Z =  
0, air pollutant concentrations were randomly distribu
ted. When −1.96 < Z < 1.96, the spatial autocorrelation 
was not significant.

Statistical analysis

All calculations and statistical analyses were conducted 
using R software (version 4.4.3). Air pollutant concentra
tions at monitoring sites were compared by season to 
determine significant differences in means using one-way 
analysis of variance (ANOVA) and Tukey’s post-hoc tests. 
Results with p-value < 0.05 was considered to indicate 
statistical significance for two-sided statistical tests. 
Pearson correlation coefficients (r) between air pollutants 
in AQMSs and IMSs were calculated using Pearson corre
lation analysis. The correlations were classified into three 
categories: weak, moderate, and strong correlations. The 
absolute value of the coefficient ( rj j) ranged from 0‒0.3 for 
weak correlations, 0.3‒0.6 for moderate correlations, and 
0.6‒1.0 for strong correlations. Spatial autocorrelation ana
lyses using GMI and LMI were conducted using the 
moran.test() and localmoran() function in the package 
“spdep” (Bivand et al. 2025) of R software.

In the box plots, mean and median values were repre
sented by a dotted line and a plain line, respectively. Box 
limits represented the 25th and 75th percentiles, and the 
whiskers extended to the 10th and 90th percentiles. 
Circles above the 90th percentile represented the 95th 
percentile, and circles below the 10th percentile repre
sented the 5th percentile. Box plots were drawn using 
SigmaPlot 10.0 (Systat Software, San Jose, CA, U.S.A.).

Results

Seasonal characteristics of air pollutants

The hourly concentrations of five air pollutants in 25 
AQMSs, one AQMS, and eight IMSs in four seasons are 

4 S. GUAK ET AL.



shown in Figure 2. The average hourly concentrations 
among the monitoring sites were significantly different 
across the four seasons (p < 0.01). The hourly air pollu
tant concentrations at the 25 AQMSs were significantly 
different among the four seasons (p < 0.001). The highest 
PM2.5, PM10, NO2, and CO concentrations at the 25 
AQMSs were observed in the winter, whereas the lowest 
concentrations were observed in the summer. Conversely, 
the highest O3 concentrations at the 25 AQMSs were 
recorded in the summer, whereas the lowest concentra
tions were noted in the winter. Hourly air pollutant con
centrations at IMSs were significantly different in the four 
seasons (p < 0.001), and the seasonal characteristics of air 
pollutants at IMSs were similar to those at the 25 AQMSs.

The hourly mean PM2.5 concentrations in the summer 
and autumn at the IMSs were significantly higher than 
those at the 25 AQMSs (p < 0.001), whereas the hourly 
mean PM2.5 concentrations in the spring at the IMSs and 
25 AQMSs differed slightly (p = 0.07). The hourly mean 
PM10 concentrations across four seasons at the IMSs were 
significantly higher than those at the 25 AQMSs (p <  
0.001). The hourly mean NO2 concentrations in the win
ter, spring, and summer at the IMSs were significantly 
higher than those at the 25 AQMSs (p < 0.05). The hourly 
mean CO concentrations in four seasons at the IMSs were 
significantly higher than those at the 25 AQMS (p <  
0.001). However, the hourly mean O3 concentrations in 
the spring and summer at the IMSs were significantly 
lower than those at the 25 AQMSs (p < 0.001). 
Descriptive statistics of hourly mean air pollutant 

concentrations at one AQMS and the IMSs in Guro-gu 
are shown in Tables S3–S7. The hourly mean air pollutant 
concentrations at the AQMS and IMSs in Guro-gu were 
significantly different in all seasons (p < 0.05).

The noncompliance rates of the Korean air quality 
standards (KAAQSs) of air pollutants at AQMSs and 
IMSs are shown in Table 1. The noncompliance rates for 
the PM2.5 KAAQS (with a 24-hr mean of 35 μg/m3) were 
approximately 30% in the winter and spring at all sites. 
The PM10 KAAQS did not exceed the 24-hr mean of 
100 μg/m3 in the summer at any site. The NO2 and CO 
concentrations in the 25 AQMSs and IMSs in all seasons 
did not exceed the KAAQSs. Noncompliance rates for 
the PM10 KAAQS at the IMSs were higher than at the 25 
AQMSs in the winter, spring, and autumn, whereas 
noncompliance rates for the O3 KAAQS at the IMSs in 
the summer were lower than at the 25 AQMSs.

Seasonal correlations between air pollutants

Seasonal correlations between air pollutants at the 25 
AQMSs and the IMSs are shown in Table 2. The seaso
nal correlation analysis was conducted to examine how 
the spatial relationships of pollutant concentrations vary 
across the four seasons and between monitoring net
work scales. The PM concentrations in the AQMSs and 
the IMSs showed significant positive correlations with 
NO2 and CO, especially in the winter and autumn 
(r values > 0.5). PM2.5 concentrations in AQMSs and 
the IMSs showed strong positive correlations with 

Figure 2. Hourly concentrations of air pollutants at 25 air quality monitoring stations (AQMSs) (blue), one AQMS in Guro-gu (pink), and 
eight in-situ monitoring sites (IMSs) in Guro-gu (white).
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NO2 and CO concentrations in autumn (r values > 0.6). 
However, O3 at the IMSs had significant negative weak 
correlations with PM in the winter and autumn, 
whereas positive correlations were observed in the sum
mer. Strong negative correlations between O3 and NO2 
were observed in the winter, whereas weak correlations 
were observed in the summer. In the winter, the corre
lation between O₃ and PM concentrations at the AQMS 
sites was nearly random, with coefficients close to zero, 
whereas the IMS sites showed stronger negative correla
tions, with coefficients ranging from −0.2 to −0.3. This 
finding demonstrates that the strength and nature of 
inter-pollutant relationships can vary substantially 
depending on the monitoring scale.

Spatial autocorrelations by area scale

Global spatial autocorrelations at the 25 AQMSs (city- 
scale) and eight IMSs (small-scale) are shown in Table 3 
using GMI. Significant global spatial homogeneity of 
PM2.5 at the 25 AQMSs was observed in the autumn, 
with a positive GMI (p < 0.05). However, PM2.5 concen
trations in the winter and spring at the 25 AQMSs were 
randomly distributed with a GMI of approximately 0. 
PM10 concentrations in the winter and spring at the 25 
AQMSs were spatially dispersed with a negative GMI. 
O3 concentrations in the winter and autumn at the 25 
AQMSs were spatially agglomerated with a significant 
positive GMI (p < 0.05). Local spatial autocorrelations at 

Table 1. The noncompliance rates (%) of the Korean ambient air quality standards (KAAQSs) of air 
pollutants by season. AQMS – air quality monitoring station, IMS – in-situ monitoring station.

Air pollutant Site Winter Spring Summer Autumn

PM2.5 (24-h) 
(35 μg/m3)

25 AQMSs 32.5 27.3 6.6 7.1
Guro AQMS 35.1 33.8 5.8 12.5
IMSs 31.7 34.1 4.3 12.5

PM10 (24-h) 
(100 μg/m3)

25 AQMSs 5.9 7.0 0 3.2
Guro AQMS 9.3 10.4 0 4.2
IMSs 20.7 12.2 0 5.6

O3 (8-h) 
(0.06 ppm)

25 AQMSs 0 3.1 6.1 0
Guro AQMS 0 7.3 12.1 0
IMSs 0 3.4 2.0 0

O3 (1-h) 
(0.1 ppm)

25 AQMSs 0 0.3 1.7 0
Guro AQMS 0 0.6 2.5 0
IMSs 0 0.2 0.3 0

Table 2. Pearson correlation coefficients (r values) among five air pollutants in 25 air quality monitoring stations (AQMSs) in Seoul 
(gray) and eight in-situ monitoring sites (IMSs) in Guro-gu, Seoul (white) by season.

PM2.5 PM10 NO2 CO O3 PM2.5 PM10 NO2 CO O3

Winter Spring

PM2.5 1 0.91** 0.57** 0.63** −0.34** 1 0.78** 0.47** 0.62** −0.003
PM10 0.94** 1 0.48** 0.57** −0.24** 0.77** 1 0.39** 0.49** 0.10*
NO2 0.55** 0.49** 1 0.78** −0.78** 0.16* 0.18** 1 0.66** −0.50**
CO 0.58** 0.57** 0.63** 1 −0.57** 0.35** 0.34** −0.43** 1 −0.32**
O3 −0.06* −0.03 −0.63** −0.26** 1 0.04 0.11* −0.55** −0.29** 1

Summer Autumn

PM2.5 1 0.94** 0.41** 0.37** 0.35** 1 0.76** 0.64** 0.66** −0.28**
PM10 0.90** 1 0.42** 0.38** 0.36** 0.79** 1 0.48** 0.45** −0.22**
NO2 0.32** 0.37** 1 0.40** −0.08* 0.61** 0.48** 1 0.71** −0.65**
CO 0.16* 0.21** 0.33** 1 0.01 0.63** 0.50** 0.76** 1 −0.49**
O3 0.27** 0.30** −0.04 0.03 1 −0.22** −0.21** −0.50** −0.44** 1

**Estimates are statistically significant at p < 0.001. 
*Estimates are statistically significant at p < 0.05.

Table 3. Global spatial autocorrelations of air pollutants at the 25 air quality monitoring stations (AQMSs) and eight in-situ monitoring 
sites (IMSs) over four seasons. GMI – global Moran’s index.

GMI

City-scale at 25 AQMSs Small-scale at 8 IMSs

Winter Spring Summer Autumn Winter Spring Summer Autumn

PM2.5 0.02 0.03 0.06 0.23* −0.01 −0.30 −0.29 −0.33
PM10 −0.18 −0.26 0.02 0.13 −0.07 −0.32 −0.29 −0.15
NO2 −0.17 −0.04 0.12 0.01 0.01 −0.35 −0.20 −0.12
CO 0.09 −0.18 −0.16 0.07 −0.36 0.16 −0.12 −0.35
O3 0.27* 0.09 0.13 0.21* −0.11 0.21* −0.19 0.19*

*Estimates are statistically significant at p < 0.05.
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each AQMS in Seoul are shown in Tables S8–S12 
using LMI.

PM2.5 and PM10 at the IMSs across all seasons had 
negative GMI, indicating that they were spatially dis
persed. PM2.5, PM10, and NO2 concentrations in the 
winter at the IMSs were randomly distributed, with 
a GMI of approximately 0. PM10 concentrations in the 
winter and spring at the IMSs were spatially dis
persed, with a negative GMI. O3 concentrations in 
the spring and autumn at the IMSs were spatially 
agglomerated, with a significant positive GMI (p <  
0.05). NO2 and CO concentrations in the summer 
and autumn at the IMSs were spatially distributed, 
with a negative GMI.

The local spatial autocorrelations at the eight IMSs 
are shown in Figure 3. Patterns of the local spatial 
autocorrelation at each monitoring site differed by sea
son. PM2.5 concentrations at locations 3, 5, and 8 were 
spatially dispersed in the winter, with a negative GMI, 
whereas they were spatially agglomerated in the summer 
and autumn, with a positive GMI. PM10 concentrations 
at location 3 and 8 were spatially dispersed in the winter, 
with a negative GMI, whereas they were randomly dis
tributed in the autumn, with a GMI of approximately 0. 
O3 concentrations at location 7 were spatially agglom
erated in all seasons.

Discussion

In this study, small-scale monitoring was conducted 
using the same standard instruments as those employed 

in the government-managed AQMS to ensure data 
accuracy and enable direct comparison between 
AQMS and IMS measurements. Although low-cost sen
sors can provide practical and cost-effective alternatives 
for air quality assessment, their accuracy is generally 
lower than that of reference methods (Shin et al.  
2024). By employing national reference instruments 
managed by the Seoul Metropolitan Government 
Research Institute of Public Health and Environment, 
measurement uncertainty was minimized and data har
monization between AQMS and IMS was secured. To 
capture fine-scale spatial variability of roadside air pol
lution, the Ministry of Environment has previously 
employed vehicles equipped with reference instruments 
for real-time monitoring (Kim et al. 2015). Similarly, in 
this study, a monitoring vehicle equipped with standard 
instruments was stationed at eight sites within a 1 km2 

test area, providing high-resolution air quality data that 
complemented the AQMS observations. This comple
mentarity underscores the value of integrating AQMS 
data, which provide long-term continuity suitable for 
evaluating temporal trends and health impacts, with 
IMS data, which offer high spatial resolution essential 
for identifying localized variations and sources. Such 
a dual-use approach ultimately enhances the accuracy 
of exposure assessments and improves the reliability of 
epidemiological findings.

There were distinct seasonal patterns of air pollutant 
concentrations. High PM concentrations were observed 
in the winter, followed by spring. High PM concentra
tions in Korea have typically been observed in the winter 
and spring (Kim et al. 2020), which is consistent with 

Figure 3. Local Moran’s I (LMI) values of air pollutants in eight in-situ monitoring sites (IMSs) by season. Blue denotes a positive spatial 
autocorrelation, red denotes a negative spatial autocorrelation, and white denotes no spatial autocorrelation.
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the seasonal variation observed in the present study. 
Such air quality is affected by the long-range transport 
of air pollutants from East Asia, regional sources, and 
meteorological conditions in the Korean Peninsula 
(Kim et al. 2018). Meanwhile, low PM concentrations 
were observed in the summer, when the PM concentra
tions were reduced by a washout effect during the rainy 
season, along with rapid air dispersion (Kim and Kim  
2000).

Noncompliance rates of the KAAQS of PM2.5 at 
AQMSs and IMSs were > 30% in the winter and the 
spring. A PM2.5 advisory in Seoul, Korea, was issued 
10 times (winter: seven times, spring: twice, and 
autumn: once) during the sampling periods. In a PM2.5 
advisory, personal exposure to PM2.5 was affected by 
high outdoor PM2.5 concentration due to high PM2.5 
infiltration (Guak and Lee 2018). PM2.5 persisted in 
ambient air for a long period due to the low tempera
ture, reduced wind speed, and less air circulation in the 
winter (Li et al. 2021). Therefore, the seasonal trend of 
ambient PM2.5 levels should be considered when mak
ing policies to reduce personal exposure to air pollution.

High O3 concentrations were observed in the spring 
and summer, whereas low O3 concentrations occurred 
in the winter. O3 is generated by a photochemical reac
tion with O3 precursors (oxides of nitrogen [NOx] and 
volatile organic compounds [VOCs]). O3 concentra
tions were affected by meteorological conditions due 
to higher air temperature and intense solar irradiation, 
which trigger photochemical reactions with O3 precur
sors (NOx and VOCs) in the spring and summer more 
so than in the winter (Hwang and Park 2019; Ribas and 
Peñuelas 2004). On the other hand, during the winter, 
the rate of photochemical reactions with O3 was slow 
due to the NOx titration effect (Jhun et al. 2015). In 
other studies in Korea, O3 levels in the spring and 
summer were significantly higher than those in the 
winter (Hwang and Park 2019; Vellingiri et al. 2015). 
These results are consistent with those in China (Chen 
et al. 2017) and Turkey (Kasparoglu, Incecik, and Topcu  
2018).

High NO2 and CO concentrations were observed in 
the winter and autumn, and low NO2 concentrations 
occurred in the summer and spring. The hourly mean 
NO2 and CO concentrations in AQMSs and IMSs did 
not exceed the corresponding KAAQS. The highest NO2 
concentration can be explained by the weak solar irra
diation available for photochemical conversion to O3, 
along with stagnant atmosphere conditions (Li et al.  
2012). In contrast, intense light irradiation also caused 
low concentrations of NO2 and other nitrogen oxides 
(Marković et al. 2008). NO2 is a gaseous pollutant with 
motor vehicle emissions as a main source (Costa et al.  

2017). CO is a colorless, nonirritating, odorless, and 
tasteless gas generated by the incomplete combustion 
of carbon compounds such as burning gasoline, wood, 
propane, charcoal, or other fuel (Sørhaug et al. 2006).

AQMS data in one administrative district of Seoul 
(Guro-gu) were significantly different from IMS data 
surrounding the AQMS. The hourly mean PM and 
NO2 concentrations at the IMSs were generally higher 
than those at the Guro AQMS. Especially, hourly mean 
CO concentrations in four seasons at the IMSs were 
approximately two-fold higher than at the AQMS. 
High CO concentrations were mainly due to on-road 
vehicle emissions (Ghaffarpasand et al. 2020). However, 
the O3 concentrations at the IMSs in the spring and 
summer were significantly lower than those at the 
Guro AQMS. The rate of exceeding the KAAQS for O3 
at the Guro AQMS in the summer was more than two- 
fold higher than that at the IMSs, which may have been 
affected by the characteristics of the monitoring loca
tion; the IMSs were located near streets and parking lots, 
whereas the Guro AQMS was located on a building 
rooftop. A study found that the O3 concentrations on 
a rooftop were higher than those on the street level 
(Park et al. 2015; Väkevä et al. 1999). In addition, each 
IMS was likely influenced by emission sources specific 
to its geographic characteristics, which may have con
tributed to the relatively higher concentrations observed 
compared to the AQMS.

The correlations between air pollutants differed by 
season. Stronger positive correlations between PM2.5 
and gaseous pollutants (e.g., NO2 and CO) were 
observed in the autumn than in other seasons. This 
result implied that increases in NO2 and CO concentra
tion affected PM2.5 concentrations in the autumn. High 
correlations between PM and gaseous pollutants in the 
autumn were observed in China (Li et al. 2017); the 
results were similar to those obtained in the present 
study, with low PM concentration in the autumn. 
However, O3 had weaker correlations with PM in the 
winter and spring compared to the correlations in the 
summer. As mentioned above, this was mainly asso
ciated with the photochemical reactions as properties of 
O3 related to climate and meteorological conditions 
(Ribas and Peñuelas 2004). PM pollution was severe in 
the winter and spring, whereas it was mild in the sum
mer. In the winter and spring, there was low tempera
ture and weak light intensity, which resulted in fewer 
reactions between PM and O3. In the summer, high 
temperatures and strong light intensity lead to an 
increase in O3 concentration due to increase photoche
mical reactions. Thus, seasonal characteristics between 
PM and O3 need to be considered on taking preventive 
control policies of air pollution.
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This study observed significant seasonal variations and 
correlations in air pollutant concentrations across differ
ent spatial scales over the course of one year. Air pollutant 
concentrations are a critical input for population expo
sure modeling. However, previous studies have often 
relied on city-scale data from AQMSs as surrogate mea
sures for exposure, highlighting the need for improve
ments in precision and accuracy (Guak et al. 2021). 
Compared with AQMSs, which primarily measure 
urban background concentrations, reflecting the seasonal 
and spatial variability of air pollutants more closely 
related to actual living environments can enhance the 
accuracy of exposure modeling. Given that spatiotem
poral variability can substantially influence the outcomes 
of exposure models, future studies should prioritize pro
viding finer-scale monitoring data to improve the relia
bility and robustness of exposure assessments.

In this study, the Moran Index was applied as 
a method to assess spatial autocorrelation by evaluating 
the degree of similarity between a given region and its 
neighboring areas. Global spatial autocorrelation can be 
used to identify whether the overall sampling areas have 
spatial autocorrelations, and, if so, to reflect the correla
tion intensity. In the 25 AQMSs in Seoul, GMIs of PM2.5 
and O3 were close to zero in the spring and were sig
nificantly positive in the autumn. This result implies 
a random distribution in the spring and spatial agglom
eration in the autumn, possibly related to seasonal pat
terns of PM2.5 and O3 concentrations. Low PM2.5 and 
O3 concentrations were observed in the autumn, 
whereas high PM2.5 and O3 concentrations were noted 
in the spring. Spatial autocorrelation was affected by 
seasonal patterns of air pollutants (Zhou et al. 2021).

Global spatial autocorrelation patterns of PM2.5 were 
different at the city-scale in 25 gu of Seoul and small- 
scale areas of 1 km2 in Guro-gu, Seoul. Global autocor
relations of PM2.5 in all seasons were spatially homo
genized with positive GMIs at the 25 AQMSs. However, 
global spatial autocorrelations of PM2.5 in all seasons 
were spatially dispersed with negative GMIs at the IMSs. 
AQMS data at the city-scale were limited to represent 
air quality in smaller areas, including unmonitored loca
tions. Hence, spatial autocorrelation should be consid
ered at a smaller scale than the city-scale.

Seasonal local spatial patterns of homogeneity and 
heterogeneity of air pollutants were differently 
observed in a spatial smaller scale using local spatial 
autocorrelation. It was difficult to generalize and 
identify the local spatial autocorrelation patterns of 
air quality in each monitoring area. Various spatial 
variations could be affected by significant complex 
factors, depending on local emission sources, climate 
conditions, or meteorological occurrences, such as 

local circulations and topographic features (Wang 
et al. 2014). Air pollutant concentrations were spa
tially heterogeneous in areas with different emission 
sources and varying air pollutant dispersion charac
teristics (Valari et al. 2020). Various spatial autocor
relations in different areas have been reported in 
other studies (Shen et al. 2019; Wang et al. 2015; 
Xu et al. 2019).

For future population exposure assessments, when 
applying pollutant concentrations derived from small 
grid units (e.g., 1 km2) that account for spatial autocor
relation identified in this study, it is important to inter
pret the results not only in terms of spatial structure but 
also in relation to the characteristics of the exposed 
population. For example, population density, age distri
bution, and time–activity patterns within each grid may 
influence actual exposure levels, even if surrounding 
concentrations are spatially correlated. A previous 
study demonstrated that considering both pollutant 
concentrations and population density can improve 
the accuracy of population-level exposure assessments 
(Woo et al. 2022). Therefore, when grid-based pollutant 
concentrations are used in exposure research, integrat
ing demographic and behavioral factors into the inter
pretation of spatial autocorrelation results may provide 
a more comprehensive understanding of population 
exposure disparities.

The limitations of this study were several. Although 
the eight grids were selected based on the urban 
AQMS in Guro-gu, the testbed configuration was cen
tered on the AQMS and thus spatially concentrated in 
the eastern part of the district. However, each IMS was 
located in a site with distinct geographic characteris
tics, allowing us to reflect environmental heterogene
ity despite the spatial concentration. Moreover, 
because the IMS sites were placed closer to human 
activity zones—such as roadside environments—they 
were able to capture finer high-resolution pollution 
patterns that the rooftop-located AQMS might not 
fully detect. Full trajectory-based exposure tracking 
(e.g., using personal GPS or wearable sensors) pro
vides the most accurate assessment, but it is often 
infeasible in large population studies due to privacy, 
cost, and logistical constraints. In this context, high- 
resolution ambient monitoring offers a practical com
promise, enabling refined exposure estimates at the 
population level and reducing misclassification in spa
tially heterogeneous areas. This study is an important 
step toward improving area-level exposure estimation. 
Future studies could build upon this framework by 
integrating spatial concentration data with personal 
movement patterns or indoor exposure models to 
construct more comprehensive exposure profiles.
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Conclusion

Seasonal spatial variations of five air pollutants were 
identified in city-scale and small-scale areas in Seoul 
using measurements with standard monitoring 
methods over one year. Seasonal spatial autocorrela
tions of air pollutant concentrations at the 25 
AQMSs in the city-scale were different from those 
in smaller-scale (1 km2) areas that were obtained 
from the eight IMSs. Seasonal patterns of spatial 
autocorrelation for air pollutants at the city-scale 
did not reflect small-scale variations. These findings 
highlight the limitations of relying solely on AQMS 
data for exposure assessment and underscore the 
value of high-resolution data to reduce estimation 
errors. This study offers a framework for improving 
air quality management and exposure assessment 
strategies by accounting for spatial-temporal varia
tions, especially in areas lacking dense monitoring 
networks. Therefore, our findings provide evidence 
that seasonal spatial variations of air pollutants at 
a small scale should be considered to assess more 
accurate estimations of personal exposure to air pol
lutants with implications for human health.
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